

Ambrozic Civil Engineering Company

Cardinal Ambrozic C.S.S. Mathematics Department

SOLVING LINEAR EQUATION | Grade 9 Academic Mathematics Student Workbook | MPM1D1 "Making decisions in light of gospel values with an informed moral conscience"

Problem 6: Which Bridge Is A Better Design?

MPM1D1

Grade 9 Academic Mathematics: Principles of Mathematics

Tool Number	Lesson Title & Topics	Topics	Homework
6.1A	Introduction		pg. 193 #1 – 5
	-SPT		eol, 8, 9, 12, 17
	-Unit 4 to 6		pg. 200 #1, 2, 4
	-Solving Simple		– 7, 9adf, 13, 18
6.1B	Solving Multi-Step Equations		pg. 193 #1 – 5
			eol, 8, 9, 12, 17
			pg. 200 #1, 2, 4
			– 7, 9adf, 13, 18
6.1C	Solving Equations With Geometric		pg. 193 #1 – 5
	Properties and Measurement		eol, 8, 9, 12, 17
			pg. 200 #1, 2, 4
			– 7, 9adf, 13, 18
6.2	Assessment FOR Learning	Quiz	Pg. 200 (Section
			4.2) #8, 9bce,
			14, 15, 17, 20,
			21
6.3	Solving Equations Involving Fractions		Pg. 208 #1, 3ac,
			4bd, 5, 6b, 9,
			10, 11
6.4	Solving Equations With CAS		NELSON
			Worksheet
6.5	Modelling With Algebra		Pg. 226 #1, 2, 3,
			4, 7, 9, 11, 15,
6.6	Jazz/Review		Pg. 230 #1 - 17
6.7	SPT Pencil and Paper Test		
6.8	SPT Bridge		
6.9	SPT Bridge		

Parent/Guardian Signature: _____

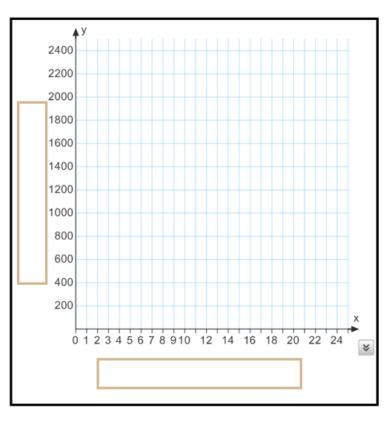
MPM1D1: Principles of Mathematics http://www.dpcdsb.org/AMBRO

Minds On: Think, Pair, Share

THE MP3 PROBLEM

Mark recently purchased an MP3 player. The player came with 1000 songs already loaded.

As part of the purchase agreement, Mark is able to download 50 additional songs per day at no charge.


Independent Variable: _____

Dependent Variable:

Numerical Model

Graphical Model

0	
5	
10	
15	
20	

Algebraic Model

How many days will it take Mark to download 11000 songs? Explain how you would solve this.

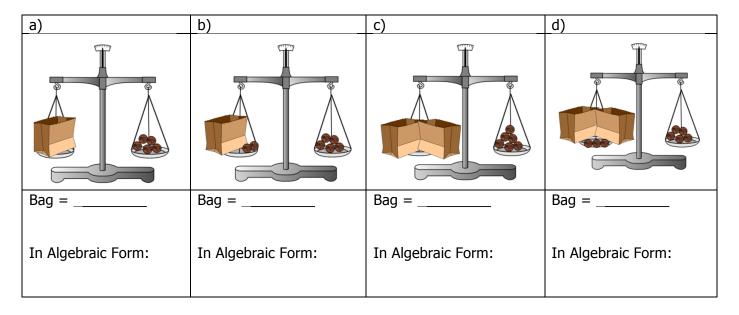
Describe the advantages and disadvantages of solving using the 1) Numerical 2) Graphical and 3) Algebraic Model

Nume	erical Model	Graph	ical Model	Algeb	raic Model
Pros		Pros		Pros	
Cons		Cons		Cons	

Action

Solving Equations By Inspection

Solve the following word problems:


- a) I am thinking of a number. When I multiply the number by 5, I get 125. What is the number?
- b) I am thinking of a number. When I add 17 to the number, I get 125. What is the number?
- c) I am thinking of a number. When I add 3 to the number and divide by 2, I get 125. What is the number?

Solve for x by inspection

a) 3x + 2 = 17 b) 2x - 5 = 1 c) 2 = 6x - 10 d) 7x + 1 = 22

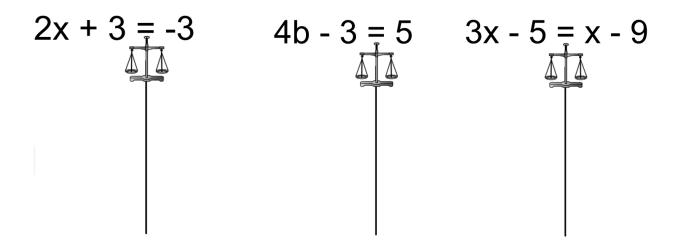
Solving Equations Using A Balance

For each of the following questions, x (the unknown) is represented by the bags. Find the value of the unknown (the value inside the bag).

Solving Equations Using A Balance Assignment

Build the equation shown below. Keep the two sides balanced. How much does x weigh (Solve for the variable x)?

1)
$$x - 5 = 2$$
 2) $3 = 2x - 1$ 3) $2x - 5 = -1$


4)
$$2x + 1 = -5$$
 5) $2x - 2 = x + 5$ 6) $1 - 2x = -2 - 3x$

7)
$$6 - x = 2x + 1$$

8) $x - 1 = -3x - 5$
9) $2 - 3x = 10 - x$

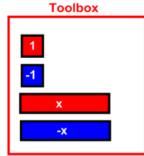
10) -x - 11 = -4x - 2 4 - x = 2x - 2

Solving Equations Using Algebra Tiles

Solve for the unknown variable using algebra tiles.

Solving Equations Algebraically

Solve for the unknown variable using algebra tiles.


$$3x + 5 = 20$$
 $2x - 3 = 4x + 5$

$$-4(u+6) = 2(3u-4) \qquad 3(p+7) - (4p-1) = -5(2p-3) + 1$$

Back to the MP3 Problem

Using any method from the previous screens, answer the following questions from the MP3 problem:

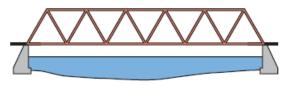
- a) How many songs will be present in the mp3 after 365 days?
- b) How many days will it take to have 57,623 song?

Consolidation

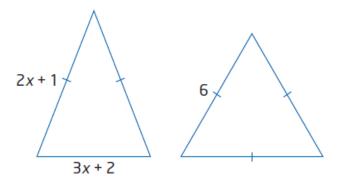
- a) 4x + 5 = 9 b) 18 = 3 5x
- c) 3x = 2x + 8 d) -x = x + 6
- e) 2 + 7x = 2x 3 f) -5 + 9x = 11 + 5x
- g) 8x 4 3x = 11 + 4x h) 4(x 3) = 3x

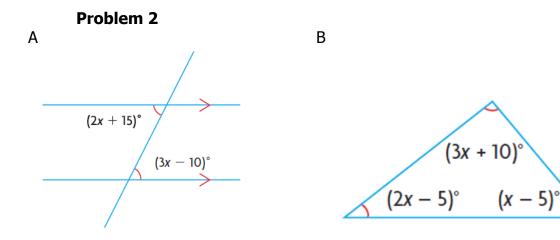
i) -3(2x - 5) = -x + 5

$$2(x + 8) = 3(2x - 4)$$


-4(u + 6) = 2(3u - 4)

$$3(p + 7) - (4p - 1) = -5(2p - 3) + 1$$

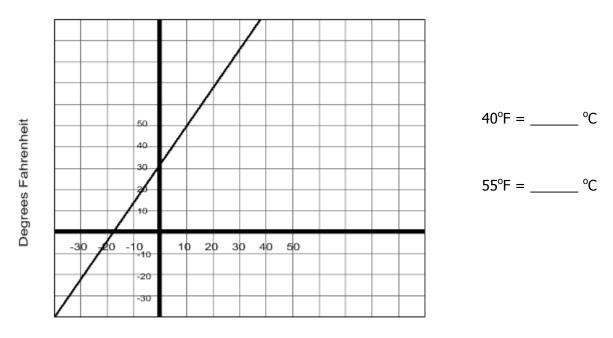

Homework list: pg. 193 #1 – 5 eol, 8, 9, 12, 17 pg. 200 #1, 2, 4 – 7, 9adf, 13, 18


Problem 1

One type of truss design commonly used to build bridges is known as the Warren truss pattern. This features a series of equilateral or isosceles triangles.

An isosceles triangle and an equilateral triangle have the same perimeter. Find the side lengths of each triangle.

Tool 6.3 Solving Equations Involving Fractions


MPM1D1: Principles of Mathematics http://www.dpcdsb.org/AMBRO

Minds On: Think, Pair, Share

Anisha is planning a trip to Florida for summer vacation. She has looked online to find typical temperatures for the area, but each one is given in degrees Fahrenheit instead of Celsius.

Using the graphical model, Anisha tries to estimate the temperature conversions for 40° F, 55° F, and 82° F using the graph below.

Degrees Celsius

$$F = \frac{9}{5}C + 32$$

$$\frac{x+2}{3} = \frac{x-4}{5} \qquad \qquad \frac{3y-2}{4} = \frac{4y+2}{3}$$

$$\frac{2x-1}{3} = \frac{x}{2} + 1$$

Consolidate: Temperature Conversions

Using the algebraic model, help Anisha by calculating the temperature conversions for 40° F, 55° F, and 82° F.

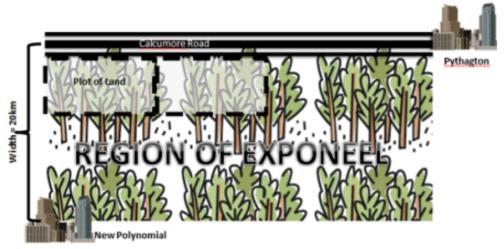
$$F = \frac{9}{5}C + 32$$

$$40 = \frac{9}{5}C + 32$$

$$55 = \frac{9}{5}C + 32$$

$$82 = \frac{9}{5}C + 32$$

Homework: Pg. 208 #1, 3ac, 4bd, 5, 6b, 9, 10, 11


6.4 Solving Simple Equations MPM1D1: Principles of Mathematics

http://www.dpcdsb.org/AMBRO

Word	Description	
	Ten plus four times a number	
	The difference of Double a number and 4	
	Five less than triple a number	
	A number divided by four is 10	
	Dami's age four years ago was ten	
	Four more than double a number	
	The sum of two consecutive number is 5	
	Four less than a number	

Problem 1

The region of Exponeel is being divided into separate land plots for agriculture. Each piece of land has to have a length that is three less than twice the width.

a) If the width of each plot is represented by x, find an expression for the length.

b) Determine an expression for the **perimeter** of one plot of land. Expand and simplify the expression.

c) Find the dimensions of the plot, if its total perimeter must be 29 km.

Problem 2

Two consecutive numbers have a sum of 127. Determine the numbers.

Problem 3

Sunny, Chantel and Thayany are neighbours.

Sunny is twice as old as Chantel, and Thayany is three years younger than Sunny. The sum of their ages is 102. How old are they?

Pg. 226 #1, 2, 3, 4, 7, 9, 11, 15

Summative Performance Task: Bridge Designing

Project 6

Unit 6: Solving Equations	
MPM1D1: Grade 9 Academic Mathematics	Principles of Mathematics

NAME:

SECTION:

Introduction

The City of Brampton is considering building a large bridge on Castlemore Rd. from Clarkway Dr. to Huntington Rd to alleviate traffic. You work for the Ambrozic Civil Engineer Company (ACE Co.) and are trying to win the bid for this project. In order to bid you must determine what bridge type works best for the city.

Through surveillance it was found that at any given moment, the maximum number of cars that will be on the bridge at one time is 100. Your task is to determine which bridge design is best for the project (Plank Bridge or Arch Bridge) and how many layers of concrete will be needed to withstand 100 cars.

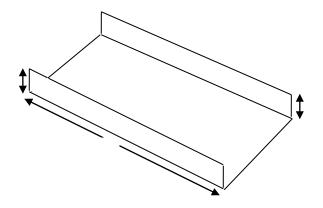
Bridge Designs

There are many different types of bridge designs which serve different purposes. The factors that determine the bridge design includes the type of traffic (i.e. more trucks or cars), what is under the bridge, the aesthetics and the cost.

Beam or Plank Bridge
Arch Bridge
Cable-Stayed Bridge
Suspension Bridge

Source: Images are taken from: NOVA Online http://www.pbs.org/wgbh/nova/bridge/build.html

Before a bridge is constructed, engineers design models to ensure that the bridge can withstand the stress of the load from cars and people.

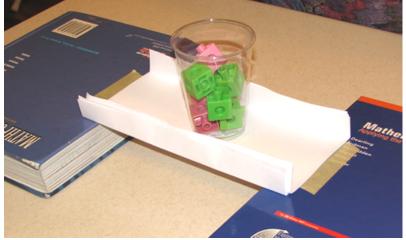

During this task you will determine what is the most structurally sound bridge. You will compare both the arch bridge with the plank bridge and you will determine how many cars your bridge can hold.

Preparation Instructions – Teacher Notes

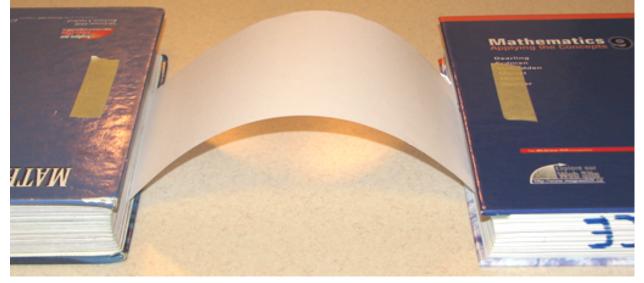
1. Have the materials manager collect 30 linking cubes, a piece of masking tape, a plastic cup and 6 pieces of paper. (Your teacher may have already cut the paper for you by cutting a standard sheet of 8.5" x 11" in half as shown below).

	,
	1
	1
	·
	I I
	1
	-
	1
	1
	· /
	h I
×	
6/10	4 I
	·
	1
	1
	1
	· /
	· /
	I I
	-
	1
	1
	1
	1

2. Fold **5** pieces of paper as shown below. These will be call you bridge planks.



3. Place a piece of masking take 2 cm from the edge of two textbooks. Make sure the spines of each book are facing outside as shown below.


Beam Bridge Instructions –Teacher Notes 4. Place the first bridge plank such that the ends of each plank touch the masking tape as shown below.

- 5. Next, place the plastic cup in the middle of the Beam Bridge.
- 6. Place a linking cube into the cup gently. Continue placing **one** linking cube at a time until the bridge collapses. The bridge must touch the desk for it to be considered a collapse.
- 7. Record this data on the data collection sheet provided.
- 8. Place another plank over top the first one creating a two layer plank bridge.

- 9. Place the empty cup in the middle of the bridge.
- 10. Repeat step 6-7
- 11. Repeat steps 8 10 for a 3, 4, and 5 layer plank beam bridge.

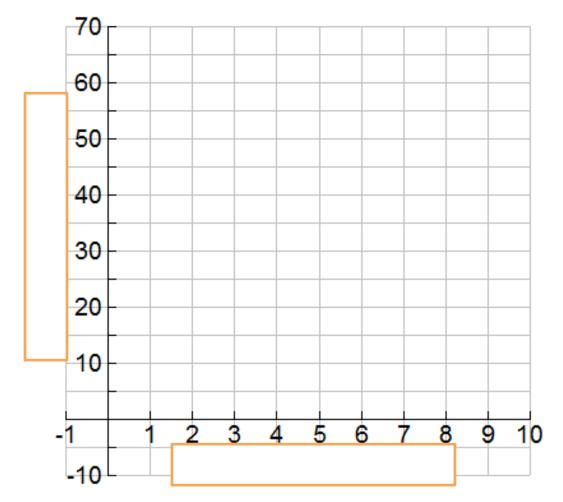
1. The next design is to create an arch bridge. Using the same textbooks and setup as the last bridge, place the unfolded piece of paper between the textbooks to form an arch as shown below.

- 2. Place one of the planks from the last activity on top of the arch making sure the ends of the plank coincide with the tape.
- 3. Place the empty cup in the middle of the plank.
- 4. Add linking cubes, one at a time until the bridge collapses.

- 5. Record this data on the data collection sheet provided.
- 6. Place another plank over top the first one creating a two layer plank bridge.
- 7. Place the empty cup in the middle of the bridge.
- 8. Repeat step 4 5
- 9. Repeat steps 6 8 for a 3, 4, and 5 layer plank arch bridge.

Ambrozic Civil Engineering Company Data Sheet

Data Tables


1. Place the data from your investigation on the tables below

BEAM BRIDGE				
Number of Planks	Number of Cubes			

ARCH BRIDGE					
Number of Planks Number of Cube					

Graphs:

2. Use this grid for the questions below.

Applications Communication				
 What variable is the x-variable (independent) (Circle one): Number of Planks or Number of Cubes What variable is the y-variable (dependent) (Circle one): Number of Planks or Number of Cubes Create a scatter plot from the data of both bridges using a different colour for each data set. Label axes with appropriately. 				
6. Create lines of best fit for both sets of data using a different colour for each line. Beam Bridge Arch Bridge				
From the Beam Bridge line of best fit, choose two points from the line of best fit . Calculate the slope using these two points.	From the Arc Bridge line of best fit, choose two points from the line of best fit . Calculate the slope using these two points.			
Explain the significance of the slope in the context of	this activity.			
What is the initial value of this relationship (y-intercept)	What is the initial value of this relationship (y-intercept)			
Explain the significance of the y-intercept in the cont	ext of this activity.			
Write an algebraic equation model for the Beam Bridge.	Write an algebraic equation model for the Arc Bridge.			
How many layers of concrete are required to hold 100 cars? Show work below.	How many layers of concrete are required to hold 100 cars? Show work below.			

Thinking

7. Which bridge presents a better design? Offer mathematical proof using data you collected and calculations you did.

8. Public Civil Engineer Co. plans on bidding on this bridge project. It claims that their bridge design is better, more stable and less costly than the plank or arch bridge from ACE Co. The equation that represents the number of cars the bridge can support is given below. Is this bridge a better bridge at y=100 cars? Justify your answer.

5(x + 3) - 3y = -13(x - 3)

		Th	inking		
		Reasoning	g and Proving		
Criteria	Below Level 1	Level 1	Level 2	Level 3	Level 4
Makes inferences, draws		Makes limited connections	Makes some connections to	Makes direct connections to	Makes direct and insightful
conclusions and gives		to the problem-solving	the problem-solving process	the problem-solving process	connections to the problem-
justifications (Question 8)		process and models	and models presented when	and models presented when	solving process and models
		presented when justifying answers	justifying answers	justifying answers	presented when justifying answers
Interprets mathematical language,		Misinterprets a critical	Misinterprets part of the	Interprets the information	Interprets the information
charts, and graphs (Compares		element of the information,	information, but makes	correctly and makes	correctly, and makes
arch and plank equation to		but makes some reasonable	some reasonable	reasonable statements	insightful statements
determine better design)		statements	statements		
		Арр	lication		
		Con	necting		
Relates mathematical ideas to		Transfers ideas to other	Transfers ideas to other	Transfers ideas to other	Transfers ideas to other
situations drawn from other		contexts and makes limited	contexts and makes	contexts and makes	contexts and makes unique,
contexts (explains initial value are slope)		connections	simple connections	appropriate connections	original or insightful connections
		Comm	unication		
		Repr	esenting		
Creates a model to represent the		Creates a model that	Creates a model that	Creates a model that	Creates a model that
problem		represents the problem with	represents the problem	represents the problem with	represents the problem with
		limited effectiveness;	with some effectiveness;	considerable effectiveness;	a high degree of
(e.g., numerical, algebraic,		representing little of the	representing some of the	representing most of the	effectiveness; representing
graphical, physical, or scale		range of the data	range of the data	range of the data	the full range of the data
model, by hand or using					
technology)					
Uses clear language to make		Uses unclear language to	Uses language that is	Uses clear language to	Uses clear and precise
presentations, and to explain and		make presentations, and to	somewhat unclear to	make presentations, and to	language to make
justify solutions when reporting for		explain and justify solutions	make presentations, and	explain and justify solutions	presentations, and to explain
various purposes and different		when reporting for various	to explain and justify	when reporting for various	and justify solutions when
audiences		purposes and different	solutions when reporting	purposes and different	reporting for various
		audiences	for various purposes and	audiences	purposes and different
			different audiences		audiences

1.RLS: Reflecting on Learning Skills

Students should be aware of the importance that these skills have on your performance. After receiving your marked assessment, answer the following questions. Be honest with yourself. Good Learning Skills will help you now, in other courses and in the future.

- E Always
- G Sometimes
- S Need Improvement
- N Never

Organization

- E G S N I came prepared for class with all materials
- E G S N My work is submitted on time
- E G S N I keep my notebook organized.

Work Habits

- E G S N I attempt all of my homework
- E G S N I use my class time efficiently
- E G S N I limit my talking to the math topic on hand
- EGSN Iam on time
- E G S N If I am away, I ask someone what I missed,
- E G S N I complete the work from the day that I missed.

Team Work

- E G S N I am an active participant in pairs/group work
- E G S N I co-operate with others within my group
- E G S N I respect the opinions of others

Initiative

- E G S N I participate in class discussion/lessons
- E G S N When I have difficulty I seek extra help
- E G S N After I resolve my difficulties, I reattempt the problem
- E G S N I review the daily lesson/ideas/concepts

Works Independently

- E G S N I attempt the work on my own
- E G S N I try before seeking help
- E G S N If I have difficulties I ask others but I stay on task
- E G S N I am committed to tasks at hand
- Yes No I know all the different ways available in my school, where I can seek extra help.
- Yes No I tried my best.

What will I do differently in the next unit to improve?